Eurasian Watermilfoil
Myriophyllum spicatum
An aggressive plant, this exotic milfoil can grow 10 feet (or more) in length forming dense mats at the water's surface. Growing in muck, sand, or rock, it has become a nuisance plant in many lakes and ponds by quickly outcompeting native species. Identifying features include a pattern of 4 leaves packed leaflets. Out of the water the leaves become limp, compressing against the stem. Hybridization with invasive Eurasian Watermilfoil.

Northern Watermilfoil
Myriophyllum sibiricum
This native species of milfoil has a hollow stem with whorled leaves at intervals along the length of the plant. Leaves are finely dissected to the mid-rib and featherlike in appearance. Each feathery leaf consists of 6-10 pairs of leaflets, which is less than that found in non-native Eurasian Watermilfoil. This entire plant is submerged with the exception of a tiny stalk of flowers that may extend above the water surface. The plant can easily be confused with and hybridize with invasive Eurasian Watermilfoil.

Fanwort
Cabomba caroliniana
This submerged exotic species is not common but management tools are limited. Very similar to aquarium BLADDERWORT. Floating leaves are small, diamond shaped with an emergent white/pinkish flower. Dense stands can occur forming mats at the water's surface. This species is native to parts of the Southeast United States.

Bladderwort
Utricularia
This is an aquatic plant. However, thick growths around shore can be problematic. Lacking true roots, it commonly floats near the surface later in summer. Stiff leaves are whorled around a hollow stem in groups of five to twelve. Coontail can be differentiated from milfoils by forked, not feathery leaves. Leaf spacing is highly variable, but the ends are often bushy, like a raccoon tail.

Coontail
Ceratophyllum demersum
Supporting waterfowl, fish, and insects, Coontail can be a desirable aquatic plant. However, thick growths around shore can be problematic. Lacking true roots, it commonly floats near the surface later in summer. Stiff leaves are whorled around a hollow stem in groups of five to twelve. Coontail can be differentiated from milfoils by forked, not feathery leaves. Leaf spacing is highly variable, but the ends are often bushy, like a raccoon tail.

Wild Celery
Vallisneria americana
Also known commonly as Eelgrass or Tapegrass, this submersed plant can form thick beds and dominate an area. The ribbon-like leaves are all attached at the base of the plant, and have a distinctive “stripe” down the center of the leaf. Individual plants are often attached to each other along creeping underground rhizomes. Flaccid when out of the water, the foliage occurs in tufts, much like turf grass. Soft muck bottoms are its preferred substrate.

Slender Naiad
Najas flexilis
Leaves of the Slender Naiad may occur in pseudo-whorls or oppositely positioned pairs (whorls tend to occur at the end of the stems). The short and narrow leaves are submersed with variable spacing between nodes. The edges may or may not appear spiny and the leaf tips taper to a fine point. Naiads are annual plants, growing from seed each year, and can form dense, bushy masses by midsummer.

Southern Naiad
Najas guadalupensis
Closely resembling Slender Naiad, Southern Naiads tend to be slightly wider and more robust than slender naiad with reddish brown stems. Leaves appear spiny along the margins. Sheaths at the base leaves surround the stem and may conceal seeds.

Curly-Leaf Pondweed
Potamogeton crispus
This undesirable exotic, also known as Crisp Pondweed, bears a waxy cuticle on its upper leaves making them stiff and somewhat brittle. The leaves have been described as resembling lasagna noodles, but upon close inspection a row of “teeth” can be seen to line the margins. Growing in dense mats near the water's surface, it outcompetes native plants for sun and space very early in spring. By midsummer, massive natural die-offs can dramatically lower oxygen levels triggering fish kills.

Clasping-Leaf Pondweed
Potamogeton richardsonii
Appearing extremely leafy at the tip due to frequent branching, Clasping-leaf can be easily confused with Curly-Leaf Pondweed. Both bear wavy, submerged leaves, however Curly-Leaf Pondweed's leaves are serrated along the edges. Clasping Leaf has leaves with smooth edges and a wide base that wraps around the stem almost completely.

Large-Leaf Pondweed
Potamogeton amplifolius
This submerged exotic species is not common but management tools are limited. Very similar to aquarium BLADDERWORT. Floating leaves are small, diamond shaped with an emergent white/pinkish flower. Dense stands can occur forming mats at the water's surface. This species is native to parts of the Southeast United States.

Large-Leaf Pondweed
Potamogeton nodosus
Floating leaves are lance-like, oval in shape with the tips slightly pointed. The base tapers to a very long, distinct petiole. The submersed leaves of this plant are often lance-like, and also taper to a long petiole. This plant generally has sparse leafing that is arranged alternately.

Red Names=Invasive Species
Green Names=Native Species
HYDRA (Hydrilla verticillata)
This extremely invasive submerged plant has leaves arranged in whorls of 3 to 8 leaves. The leaf has distinctive toothed margins, with pointed spines on the undersides of the leaf. It is easily confused with native elodea, which has 3 leaves per whorl and lacking evident toothed leaf margins. This plant reproduces through turion formation and fragmentation. In 2006 Hydrilla was confirmed in the Midwest.

ELODEA (Elodea canadensis)
This submerged weed with broad oval leaves at first glance appears very similar to Hydrilla, however this plant usually contains its leaves on the tips of 3 to 8 leaves. Whorls are compact near the growth tip with spacing between the whorls gradually increasing as you go down the stem. This plant has leaves that have smooth edges and lack the spine on the underside of the leaf that Hydrilla has. Plants form dense stands and altering habitat. It has uneven branches that look angular at each joint. Branches feel smooth with a green gelatin appearance. A cream colored star-shaped bulb can be found at the base of each cluster of branches. This species can be found growing in shallow and slow moving deep waters.

WATERMEAL (Wolfia spp.)
This plant is extremely small, no larger than a pinhead. It shows no visible roots and looks like green cornmeal or grits. The smallest of the flowering plants, it is usually very abundant when present. It is also often mistaken for seeds floating on the surface. This species is generally very difficult to control, and often coexists with duckweed.

STARry STONEWORT (Nitrilopsis obtusa)
This plant-like algae is very similar in appearance to Chara. Unfortunately it is highly invasive not only outcompeting native submerged plants but exotic species also. It also destroys crucial fish spawning habitat. It has uneven branches that look angular at each joint. Branches feel smooth with a green gelatin appearance. A cream colored star-shaped bulb can be found at the base of each cluster of branches. This species can be found growing in shallow and slow moving deep waters.

ARROWHEAD (Sagittaria spp.)
This plant is named for its arrow-shaped leaf. This emergent plant may also have some elliptical emergent leaves and sometimes will also have ribbon, or tongue-like submersed leaves. This plant has underground rootstocks with tubers and may at times have tiny white flowers present.

CHARA (Chara spp.)
Chara is typically found growing in clear, hard water. Lacking true stems and leaves, Chara is actually a form of algae. Its stems are hollow with leaf-like structures in a whirled pattern. It may be found growing with tiny, orange fruiting bodies on the branches called akinetes. Thick masses of Chara can form in some areas. Often confused with Starr stonewort, Coontail or Milfoils, it can be identified by a gritty texture and musty odor when crushed between the fingers. The gritty texture is caused by calcium deposits on the surface of the stems and branches.

WATERLILY (Nymphaea spp.)
Large round pad with a cleft running almost to mid-vein. Leaves are usually 6-8 inches in diameter and the leaf veins radiate outward from the petiole. The underside of the leaf is a purplish red color and the flower is white with many rows of petals. This plant has a thick, fleshy rhizome network buried in the mud.

WATERSHIELD (Brasenia schreberi)
Also known commonly as Dollar Bonnet. This plants leaves are oval to elliptical with a smooth edge. The stem (petiole) is attached to the middle of the leaf. Leaves are 2-5 inches in length. Mature plants will have a slimy, gelatinous coating on the leaf underside. This plant produces a dull purple flower in later summer, and the plant is rooted in the sediment.

BULRUSH (Schoenoplectus spp.)
This plant has a long, tall triangular or round stem that may or may not contain leaves. This plant has a cluster of brownish flowers and seeds located at the end of the stem. This plant will generally be found along the shoreline or in shallow waters.

MAPMS would like to thank the sources of information for their support of this educational printing including updates suggested by Brenton Butterfield (Onterra, LLC) and Michelle Nault (Wisconsin Department of Natural Resources). Photographs, unless noted, are copyright Paul Skawinski and excerpted from Aquatic Plants of the Upper Midwest – 2nd Edition, used with permission. This book is available through the University of Wisconsin-Extension Lakes Program.

For more information contact: Midwest Aquatic Plant Management Society www.mapms.org